Муниципальное бюджетное общеобразовательное учреждение г.о. Тольятти «Школа № 79 имени П.М. Калинина»

РАССМОТРЕНА
на заседании методического
объединения учителей физикоматематического цикла
Протокол № 1 от 26.08.2020 г.
Теребинова С.А.

ПРИНЯТА

на заседании
Педагогического МБУ «Школа №79»

совета
Протокол №1

от 31.08.2020 «Школа № 169-2-од от 31.08.2020

Рабочая программа «Информатика» (основное общее образование)

Составили:

Теребинова С.А. учитель математики, руководитель методического объединения учителей физико-математического цикла Смородина Е.А. учитель математики и информатики

Рабочая программа учебного предмета «Информатика» (основное общее образование) разработана на основе:

- Фундаментального ядра содержания общего образования.
- Федерального государственного образовательного стандарта основного общего образования.
- Примерной основной образовательной программы основного общего образования.
- УМК Семакина И.Г. /Программа основного общего образования по информатике (7-9 классы). Авторы: И.Г. Семакин, Л.А. Залогова, С.В. Русаков, Л.В. Шестакова. Издательство «БИНОМ. Лаборатория знаний»/.

1. Планируемые результаты освоения учебного предмета «Информатика»

Изучение предметной области "Математика и информатика" должно обеспечить:

осознание значения математики и информатики в повседневной жизни человека;

формирование представлений о социальных, культурных и исторических факторах становления математической науки;

понимание роли информационных процессов в современном мире;

формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.

В результате изучения предметной области "Математика и информатика" обучающиеся развивают логическое и математическое мышление, получают представление о математических моделях; овладевают математическими рассуждениями;

учатся применять математические знания при решении различных задач и оценивать полученные результаты; овладевают умениями решения учебных задач; развивают математическую интуицию; получают представление об основных информационных процессах в реальных ситуациях.

Предметные результаты изучения предметной области "Математика и информатика" должны отражать:

Информатика:

- развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, компьютера, пользоваться оценкой и прикидкой при практических расчетах:

распознавание верных и неверных высказываний;

оценивание результатов вычислений при решении практических задач;

выполнение сравнения чисел в реальных ситуациях;

использование числовых выражений при решении практических задач и задач из других учебных предметов;

решение практических задач с применением простейших свойств фигур;

выполнение простейших построений и измерений на местности, необходимых в реальной жизни;

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях,

логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами - линейной, условной и циклической;

- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права;
 - для слепых и слабовидящих обучающихся:

владение правилами записи математических формул и специальных знаков рельефноточечной системы обозначений Л.Брайля;

владение тактильно-осязательным способом обследования и восприятия рельефных изображений предметов, контурных изображений геометрических фигур и т.п.;

умение читать рельефные графики элементарных функций на координатной плоскости, применять специальные приспособления для рельефного черчения;

владение основным функционалом программы невизуального доступа к информации на экране ПК, умение использовать персональные тифлотехнические средства информационно-коммуникационного доступа слепыми обучающимися;

- для обучающихся с нарушениями опорно-двигательного аппарата:

владение специальными компьютерными средствами представления и анализа данных и умение использовать персональные средства доступа с учетом двигательных, речедвигательных и сенсорных нарушений;

умение использовать персональные средства доступа.

Предметные результаты учебного предмета «Информатика»

Выпускник научится:

- •различать содержание основных понятий предмета: информатика, информация, информационный процесс, информационная система, информационная модель и др.;
- •различать виды информации по способам ее восприятия человеком и по способам ее представления на материальных носителях;
- •раскрывать общие закономерности протекания информационных процессов в системах различной природы;
- •приводить примеры информационных процессов процессов, связанные с хранением, преобразованием и передачей данных в живой природе и технике;
 - •классифицировать средства ИКТ в соответствии с кругом выполняемых задач;
- •узнает о назначении основных компонентов компьютера (процессора, оперативной памяти, внешней энергонезависимой памяти, устройств ввода-вывода), характеристиках этих устройств;
- •определять качественные и количественные характеристики компонентов компьютера;
- •узнает об истории и тенденциях развития компьютеров; о том как можно улучшить характеристики компьютеров;
 - •узнает о том, какие задачи решаются с помощью суперкомпьютеров.

Выпускник получит возможность:

- осознано подходить к выбору ИКТ-средств для своих учебных и иных целей;
- узнать о физических ограничениях на значения характеристик компьютера.

Математические основы информатики

Выпускник научится:

•описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них; использовать термины, описывающие скорость передачи данных, оценивать время передачи данных;

- •кодировать и декодировать тексты по заданной кодовой таблице;
- •оперировать понятиями, связанными с передачей данных (источник и приемник данных: канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
- •определять минимальную длину кодового слова по заданным алфавиту кодируемого текста и кодовому алфавиту (для кодового алфавита из 2, 3 или 4 символов);
- •определять длину кодовой последовательности по длине исходного текста и кодовой таблице равномерного кода;
- записывать в двоичной системе целые числа от 0 до 1024; переводить заданное натуральное число из десятичной записи в двоичную и из двоичной в десятичную; сравнивать числа в двоичной записи; складывать и вычитать числа, записанные в двоичной системе счисления;
- записывать логические выражения, составленные с помощью операций «и», «или», «не» и скобок, определять истинность такого составного высказывания, если известны значения истинности входящих в него элементарных высказываний;
- •определять количество элементов в множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения;
- •использовать терминологию, связанную с графами (вершина, ребро, путь, длина ребра и пути), деревьями (корень, лист, высота дерева) и списками (первый элемент, последний элемент, предыдущий элемент, следующий элемент; вставка, удаление и замена элемента);
- •описывать граф с помощью матрицы смежности с указанием длин ребер (знание термина «матрица смежности» не обязательно);
- познакомиться с двоичным кодированием текстов и с наиболее употребительными современными кодами;
- •использовать основные способы графического представления числовой информации, (графики, диаграммы).

Выпускник получит возможность:

- •познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием:
- •узнать о том, что любые дискретные данные можно описать, используя алфавит, содержащий только два символа, например, 0 и 1;
- •познакомиться с тем, как информация (данные) представляется в современных компьютерах и робототехнических системах;
- •познакомиться с примерами использования графов, деревьев и списков при описании реальных объектов и процессов;
- ознакомиться с влиянием ошибок измерений и вычислений на выполнение алгоритмов управления реальными объектами (на примере учебных автономных роботов);
- узнать о наличии кодов, которые исправляют ошибки искажения, возникающие при передаче информации.

При изучении предмета «Информатика» в соответствии с требованиями ΦΓΟС формируются следующие **личностные результаты**:

1. Формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.

Каждая учебная дисциплина формирует определенную составляющую научного мировоззрения. Информатика формирует представления учащихся о науках, развивающих информационную картину мира, вводит их в область информационной деятельности людей. В этом смысле большое значение имеет историческая линия в содержании курса. Ученики знакомятся с историей развития средств ИКТ, с важнейшими научными открытиями и

изобретениями, повлиявшими на прогресс в этой области, с именами крупнейших ученых и изобретателей. Ученики получают представление о современном уровне и перспективах развития ИКТ-отрасли, в реализации которых в будущем они, возможно, смогут принять участие. Историческая линия отражена в следующих разделах учебников:

- 7 класс, § 2, «Восприятие и представление информации»: раскрывается тема исторического развития письменности, классификации и развития языков человеческого общения.
- 9 класс, § 22 «Предыстория информатики» раскрывается история открытий и изобретений средств и методов хранения, передачи и обработки информации до создания ЭВМ.
- 9 класс, § 23 «История ЭВМ», § 24 «История программного обеспечения и ИКТ», раздел 2.4 «История языков программирования» посвящены современному этапу развития
- 2.4 «История языков программирования» посвящены современному этапу развити: информатики и ее перспективам.
 - 2. Формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности.

В конце каждого параграфа присутствуют вопросы и задания, многие из которых ориентированы на коллективное обсуждение, дискуссии, выработку коллективного мнения. В задачнике-практикуме, входящим в состав УМК, помимо заданий для индивидуального выполнения в ряде разделов (прежде всего, связанных с освоением информационных технологий) содержатся задания проектного характера (под заголовком «Творческие задачи и проекты»). В методическом пособии для учителя даются рекомендации об организации коллективной работы над проектами. Работа над проектом требует взаимодействия между учениками — исполнителями проекта, а также между учениками и учителем, формулирующим задание для проектирования, контролирующим ход его выполнения, принимающим результаты работы. В завершении работы предусматривается процедура зашиты проекта перед коллективом класса, которая также направлена на формирование коммуникативных навыков учащихся.

3. Формирование ценности здорового и безопасного образа жизни.

Все большее время у современных детей занимает работа за компьютером (не только над учебными заданиями). Поэтому для сохранения здоровья очень важно знакомить учеников с правилами безопасной работы за компьютером, с компьютерной эргономикой. Учебник для 7 класса начинается с раздела «Техника безопасности и санитарные нормы работы за ПК». Эту тему поддерживает интерактивный ЦОР «Техника безопасности и санитарные нормы» (файл 8_024.pps). В некоторых обучающих программах, входящих в коллекцию ЦОР, автоматически контролируется время непрерывной работы учеников за компьютером. Когда время достигает предельного значения, определяемого СанПИНами, происходит прерывание работы программы и ученикам предлагается выполнить комплекс упражнений для тренировки зрения. После окончания «физкульт-паузы» продолжается работа с программой.

При изучении предмета «Информатика» в соответствии с требованиями ΦΓΟС формируются следующие **метапредметные результаты:**

1. Умение самостоятельно планировать пути достижения цели, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.

В курсе информатики данная компетенция обеспечивается алгоритмической линией, которая реализована в учебнике 9 класса, в главе 1 «Управление и алгоритмы» и главе 2 «Введение в программирование». Алгоритм можно назвать планом достижения цели исходя из ограниченных ресурсов (исходных данных) и ограниченных возможностей исполнителя (системы команд исполнителя). С самых первых задач на алгоритмизацию подчеркивается возможность построения разных алгоритмов для решения одной и той же задачи (достижения одной цели). Для сопоставления алгоритмов в программировании существуют критерии сложности: сложность по данным и сложность по времени. Этому вопросу в

учебнике 9 класса посвящен § 2.2. «Сложность алгоритмов» в дополнительном разделе к главе 2.

2. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения

В методику создания любого информационного объекта: текстового документа, базы данных, электронной таблицы, программы на языке программирования, входит обучение правилам верификации, т.е. проверки правильности функционирования созданного объекта. Осваивая создание динамических объектов: баз данных и их приложений, электронных таблиц, программ (8 класс, главы 3, 4; 9 класс, главы 1, 2), ученики обучаются тестированию. Умение оценивать правильность выполненной задачи в этих случаях заключается в умении выстроить систему тестов, доказывающую работоспособность созданного продукта. Специально этому вопросу посвящен в учебнике 9 класса, в § 29 раздел «Что такое отладка и тестирование программы».

3. Умения определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, устанавливать прчинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы.

Формированию данной компетенции в курсе информатики способствует изучение системной линии. В информатике системная линия связана с информационным моделированием (8 класс, глава «Информационное моделирование»). При этом используются основные понятия системологии: система, элемент системы, подсистема, связи (отношения, зависимости), структура, системный эффект. Эти вопросы раскрываются в дополнении к главе 2 учебника 8 класса, параграфы 2.1. «Системы, модели, графы», 2.2. «Объектно-информационные модели». В информатике логические умозаключения формализуются средствами алгебры логики, которая находит применение в разделах, посвященных изучению баз данных (8 класс, глава 3), электронных таблиц (8 класс, глава 4), программирования (9 класс, глава 2)

4. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач.

Формированию данной компетенции способствует изучение содержательных линии «Представление информации» и «Формализация и моделирование». Информация любого типа (текстовая, числовая, графическая, звуковая) в компьютерной памяти представляется в двоичной форме — знаковой форме компьютерного кодирования. Поэтому во всех темах, относящихся к представлению различной информации, ученики знакомятся с правилами преобразования в двоичную знаковую форму: 7 класс, глава 3 «Текстовая информация и компьютер»; глава 4 «Графическая информация и компьютер»; глава 5 «Мультимедиа и компьютерные презентации», тема: представление звука; 8 класс, глава 4, тема «Системы счисления»

В информатике получение описания исследуемой системы (объекта) в знаково-символьной форме (в том числе – и в схематической) называется формализацией. Путем формализации создается информационная модель, а при ее реализации на компьютере с помощью какогото инструментального средства получается компьютерная модель. Этим вопросам посвящаются: 8 класс, глава 2 «Информационное моделирование», а также главы 3 и 4, где рассматриваются информационные модели баз данных и динамические информационные модели в электронных таблицах.

5. Формирование и развитие компетентности в области использования ИКТ (ИКТ-компетенции).

Данная компетенция формируется содержательными линиями курса «Информационные технологии» и «Компьютерные телекоммуникации».

2. Содержание учебного предмета «Информатика»

7 класс

1. Человек и информация

Предмет информатики. Роль информации в жизни людей. Содержание базового курса информатики.

Информация и ее виды. Восприятие информации человеком. Информационные процессы

Измерение информации. Единицы измерения информации.

<u>Практика на компьютере</u>: освоение клавиатуры, работа с тренажером; основные приемы редактирования.

Учащиеся должны знать:

- связь между информацией и знаниями человека;
- что такое информационные процессы;
- какие существуют носители информации;
- функции языка, как способа представления информации; что такое естественные и формальные языки;
- как определяется единица измерения информации бит (алфавитный подход);
- что такое байт, килобайт, мегабайт, гигабайт.

Учащиеся должны уметь:

- приводить примеры информации и информационных процессов из области человеческой деятельности, живой природы и техники;
- определять в конкретном процессе передачи информации источник, приемник, канал;
- приводить примеры информативных и неинформативных сообщений;
- измерять информационный объем текста в байтах (при использовании компьютерного алфавита);
- пересчитывать количество информации в различных единицах (битах, байтах, Кб, Мб, Гб);
- пользоваться клавиатурой компьютера для символьного ввода данных.

2. Компьютер: устройство и программное обеспечение

Начальные сведения об архитектуре компьютера.

Принципы организации внутренней и внешней памяти компьютера. Двоичное представление данных в памяти компьютера. Организация информации на внешних носителях, файлы.

Персональный компьютер. Основные устройства и характеристики. Правила техники безопасности и эргономики при работе за компьютером.

Виды программного обеспечения (ПО). Системное ПО. Операционные системы. Основные функции ОС. Файловая структура внешней памяти. Объектно-ориентированный пользовательский интерфейс.

<u>Практика на компьютере</u>: знакомство с комплектацией устройств персонального компьютера, со способами их подключений; знакомство с пользовательским интерфейсом операционной системы; работа с файловой системой ОС (перенос, копирование и удаление файлов, создание и удаление папок, переименование файлов и папок, работа с файловым менеджером, поиск файлов на диске); работа со справочной системой ОС; использование антивирусных программ.

Учащиеся должны знать:

- правила техники безопасности и при работе на компьютере;
- состав основных устройств компьютера, их назначение и информационное взаимодействие;

- основные характеристики компьютера в целом и его узлов (различных накопителей, устройств ввода и вывода информации);
- структуру внутренней памяти компьютера (биты, байты); понятие адреса памяти;
- типы и свойства устройств внешней памяти;
- типы и назначение устройств ввода/вывода;
- сущность программного управления работой компьютера;
- принципы организации информации на внешних носителях: что такое файл, каталог (папка), файловая структура;
- назначение программного обеспечения и его состав.

Учащиеся должны уметь:

- включать и выключать компьютер;
- пользоваться клавиатурой;
- ориентироваться в типовом интерфейсе: пользоваться меню, обращаться за справкой, работать с окнами;
- инициализировать выполнение программ из программных файлов;
- просматривать на экране директорию диска;
- выполнять основные операции с файлами и каталогами (папками): копирование, перемещение, удаление, переименование, поиск;
- использовать антивирусные программы.

3. Текстовая информация и компьютер

Тексты в компьютерной памяти: кодирование символов, текстовые файлы. Работа с внешними носителями и принтерами при сохранении и печати текстовых документов.

Текстовые редакторы и текстовые процессоры, назначение, возможности, принципы работы с ними. Интеллектуальные системы работы с текстом (распознавание текста, компьютерные словари и системы перевода)

<u>Практика на компьютере</u>: основные приемы ввода и редактирования текста; постановка руки при вводе с клавиатуры; работа со шрифтами; приемы форматирования текста; работа с выделенными блоками через буфер обмена; работа с таблицами; работа с нумерованными и маркированными списками; вставка объектов в текст (рисунков, формул); знакомство со встроенными шаблонами и стилями, включение в текст гиперссылок.

При наличии соответствующих технических и программных средств: практика по сканированию и распознаванию текста, машинному переводу.

Учащиеся должны знать:

- способы представления символьной информации в памяти компьютера (таблицы кодировки, текстовые файлы);
- назначение текстовых редакторов (текстовых процессоров);
- основные режимы работы текстовых редакторов (ввод-редактирование, печать, орфографический контроль, поиск и замена, работа с файлами).

Учащиеся должны уметь:

- набирать и редактировать текст в одном из текстовых редакторов;
- выполнять основные операции над текстом, допускаемые этим редактором;
- сохранять текст на диске, загружать его с диска, выводить на печать.

4. Графическая информация и компьютер

Компьютерная графика: области применения, технические средства. Принципы кодирования изображения; понятие о дискретизации изображения. Растровая и векторная графика.

Графические редакторы и методы работы с ними.

<u>Практика на компьютере</u>: создание изображения в среде графического редактора растрового типа с использованием основных инструментов и приемов манипулирования рисунком (копирование, отражение, повороты, прорисовка); знакомство с работой в среде

редактора векторного типа (можно использовать встроенную графику в текстовом процессоре).

При наличии технических и программных средств: сканирование изображений и их обработка в среде графического редактора.

Учащиеся должны знать:

- способы представления изображений в памяти компьютера; понятия о пикселе, растре, кодировке цвета, видеопамяти;
- какие существуют области применения компьютерной графики;
- назначение графических редакторов;
- назначение основных компонентов среды графического редактора растрового типа: рабочего поля, меню инструментов, графических примитивов, палитры, ножниц, ластика и пр.

<u>Учащиеся должны уметь:</u>

- строить несложные изображения с помощью одного из графических редакторов;
- сохранять рисунки на диске и загружать с диска; выводить на печать.

5. Мультимедиа и компьютерные презентации

Что такое мультимедиа; области применения. Представление звука в памяти компьютера; понятие о дискретизации звука. Технические средства мультимедиа. Компьютерные презентации.

<u>Практика на компьютере</u>: освоение работы с программным пакетом создания презентаций; создание презентации, содержащей графические изображения, анимацию, звук, текст, демонстрация презентации с использованием мультимедийного проектора;

При наличии технических и программных средств: запись звука в компьютерную память; запись изображения с использованием цифровой техники и ввод его в компьютер; использование записанного изображения и звука в презентации.

Учащиеся должны знать:

- ⇒ что такое мультимедиа;
- \Rightarrow принцип дискретизации, используемый для представления звука в памяти компьютера;
 - ⇒ основные типы сценариев, используемых в компьютерных презентациях.

Учащиеся должны уметь:

⇒ Создавать несложную презентацию в среде типовой программы, совмещающей изображение, звук, анимацию и текст.

8 класс

1. Передача информации в компьютерных сетях

Компьютерные сети: виды, структура, принципы функционирования, технические устройства. Скорость передачи данных.

Информационные услуги компьютерных сетей: электронная почта, телеконференции, файловые архивы пр. Интернет. WWW — "Всемирная паутина". Поисковые системы Интернет. Архивирование и разархивирование файлов.

<u>Практика на компьютере</u>: работа в локальной сети компьютерного класса в режиме обмена файлами; Работа в Интернете (или в учебной имитирующей системе) с почтовой программой, с браузером WWW, с поисковыми программами. Работа с архиваторами.

Знакомство с энциклопедиями и справочниками учебного содержания в Интернете (используя отечественные учебные порталы). Копирование информационных объектов из Интернета (файлов, документов).

Создание простой Web-страницы с помощью текстового процессора.

Учащиеся должны знать:

 что такое компьютерная сеть; в чем различие между локальными и глобальными сетями;

- назначение основных технических и программных средств функционирования сетей: каналов связи, модемов, серверов, клиентов, протоколов;
- назначение основных видов услуг глобальных сетей: электронной почты, телеконференций, файловых архивов и др;
- что такое Интернет; какие возможности предоставляет пользователю «Всемирная паутина» WWW.

Учащиеся должны уметь:

- осуществлять обмен информацией с файл-сервером локальной сети или с рабочими станциями одноранговой сети;
- осуществлять прием/передачу электронной почты с помощью почтовой клиент-программы;
- осуществлять просмотр Web-страниц с помощью браузера;
- осуществлять поиск информации в Интернете, используя поисковые системы;
- работать с одной из программ-архиваторов.

2. Информационное моделирование

Понятие модели; модели натурные и информационные. Назначение и свойства моделей.

Виды информационных моделей: вербальные, графические, математические, имитационные. Табличная организация информации. Области применения компьютерного информационного моделирования.

<u>Практика на компьютере</u>: работа с демонстрационными примерами компьютерных информационных моделей.

Учащиеся должны знать:

- -что такое модель; в чем разница между натурной и информационной моделями;
- -какие существуют формы представления информационных моделей (графические, табличные, вербальные, математические).

Учащиеся должны уметь:

- -приводить примеры натурных и информационных моделей;
- -ориентироваться в таблично организованной информации;
- -описывать объект (процесс) в табличной форме для простых случаев;

3. Хранение и обработка информации в базах данных

Понятие базы данных (БД), информационной системы. Основные понятия БД: запись, поле, типы полей, первичный ключ. Системы управления БД и принципы работы с ними. Просмотр и редактирование БД.

Проектирование и создание однотабличной БД.

Условия поиска информации, простые и сложные логические выражения. Логические операции. Поиск, удаление и сортировка записей.

<u>Практика на компьютере:</u> работа с готовой базой данных: открытие, просмотр, простейшие приемы поиска и сортировки; формирование запросов на поиск с простыми условиями поиска; логические величины, операции, выражения; формирование запросов на поиск с составными условиями поиска; сортировка таблицы по одному и нескольким ключам; создание однотабличной базы данных; ввод, удаление и добавление записей.

Знакомство с одной из доступных геоинформационных систем (например, картой города в Интернете).

Учащиеся должны знать:

- -что такое база данных, СУБД, информационная система;
- -что такое реляционная база данных, ее элементы (записи, поля, ключи); типы и форматы полей;
 - -структуру команд поиска и сортировки информации в базах данных;
 - -что такое логическая величина, логическое выражение;
 - -что такое логические операции, как они выполняются.

<u>Учащиеся должны уметь:</u>

- -открывать готовую БД в одной из СУБД реляционного типа;
- -организовывать поиск информации в БД;
- -редактировать содержимое полей БД;
- -сортировать записи в БД по ключу;
- -добавлять и удалять записи в БД;
- -создавать и заполнять однотабличную БД в среде СУБД.

4. Табличные вычисления на компьютере

Двоичная система счисления. Представление чисел в памяти компьютера.

Табличные расчеты и электронные таблицы. Структура электронной таблицы, типы данных: тексты, числа, формулы. Адресация относительная и абсолютная. Встроенные функции. Методы работы с электронными таблицами.

Построение графиков и диаграмм с помощью электронных таблиц. Математическое моделирование и решение задач с помощью электронных таблиц.

<u>Практика на компьютере</u>: работа с готовой электронной таблицей: просмотр, ввод исходных данных, изменение формул; создание электронной таблицы для решения расчетной задачи; решение задач с использованием условной и логических функций; манипулирование фрагментами ЭТ (удаление и вставка строк, сортировка строк). Использование встроенных графических средств.

Численный эксперимент с данной информационной моделью в среде электронной таблицы.

Учащиеся должны знать:

- -что такое электронная таблица и табличный процессор;
- -основные информационные единицы электронной таблицы: ячейки, строки, столбцы, блоки и способы их идентификации;
- -какие типы данных заносятся в электронную таблицу; как табличный процессор работает с формулами;
- -основные функции (математические, статистические), используемые при записи формул в ЭТ;
 - -графические возможности табличного процессора.

Учащиеся должны уметь:

- -открывать готовую электронную таблицу в одном из табличных процессоров;
- -редактировать содержимое ячеек; осуществлять расчеты по готовой электронной таблице;
- -выполнять основные операции манипулирования с фрагментами ЭТ: копирование, удаление, вставка, сортировка;
 - -получать диаграммы с помощью графических средств табличного процессора;
 - -создавать электронную таблицу для несложных расчетов.

9 класс

1. Управление и алгоритмы

Кибернетика. Кибернетическая модель управления.

Понятие алгоритма и его свойства. Исполнитель алгоритмов: назначение, среда исполнителя система команд исполнителя, режимы работы.

Языки для записи алгоритмов (язык блок-схем, учебный алгоритмический язык). Линейные, ветвящиеся и циклические алгоритмы. Структурная методика алгоритмизации. Вспомогательные алгоритмы. Метод пошаговой детализации.

<u>Практика на компьютере</u>: работа с учебным исполнителем алгоритмов; составление линейных, ветвящихся и циклических алгоритмов управления исполнителем; составление алгоритмов со сложной структурой; использование вспомогательных алгоритмов (процедур, подпрограмм).

Учащиеся должны знать:

-что такое кибернетика; предмет и задачи этой науки;

- -сущность кибернетической схемы управления с обратной связью; назначение прямой и обратной связи в этой схеме;
 - -что такое алгоритм управления; какова роль алгоритма в системах управления;
 - -в чем состоят основные свойства алгоритма;
 - -способы записи алгоритмов: блок-схемы, учебный алгоритмический язык;
- -основные алгоритмические конструкции: следование, ветвление, цикл; структуры алгоритмов;
- -назначение вспомогательных алгоритмов; технологии построения сложных алгоритмов: метод последовательной детализации и сборочный (библиотечный) метод.

Учащиеся должны уметь:

- -при анализе простых ситуаций управления определять механизм прямой и обратной связи;
- -пользоваться языком блок-схем, понимать описания алгоритмов на учебном алгоритмическом языке;
 - -выполнить трассировку алгоритма для известного исполнителя;
- -составлять линейные, ветвящиеся и циклические алгоритмы управления одним из учебных исполнителей;
 - -выделять подзадачи; определять и использовать вспомогательные алгоритмы.

2. Введение в программирование

Алгоритмы работы с величинами: константы, переменные, понятие типов данных, ввод и вывод данных.

Языки программирования высокого уровня (ЯПВУ), их классификация. Структура программы на языке Паскаль. Представление данных в программе. Правила записи основных операторов: присваивания, ввода, вывода, ветвления, циклов. Структурный тип данных — массив. Способы описания и обработки массивов.

Этапы решения задачи с использованием программирования: постановка, формализация, алгоритмизация, кодирование, отладка, тестирование.

<u>Практика на компьютере</u>: знакомство с системой программирования на языке Паскаль; ввод, трансляция и исполнение данной программы; разработка и исполнение линейных, ветвящихся и циклических программ; программирование обработки массивов.

Учащиеся должны знать:

- -основные виды и типы величин;
- -назначение языков программирования;
- -что такое трансляция;
- -назначение систем программирования;
- -правила оформления программы на Паскале;
- -правила представления данных и операторов на Паскале;
- -последовательность выполнения программы в системе программирования..

Учащиеся должны уметь:

- -работать с готовой программой на Паскале;
- -составлять несложные линейные, ветвящиеся и циклические программы;
- -составлять несложные программы обработки одномерных массивов;
- -отлаживать, и исполнять программы в системе программирования.

3. Информационные технологии и общество

Предыстория информационных технологий. История ЭВМ и ИКТ. Понятие информационных ресурсов. Информационные ресурсы современного общества. Понятие об информационном обществе. Проблемы безопасности информации, этические и правовые нормы в информационной сфере.

Учащиеся должны знать:

основные этапы развития средств работы с информацией в истории человеческого общества;

- основные этапы развития компьютерной техники (ЭВМ) и программного обеспечения;
 - в чем состоит проблема безопасности информации;
- какие правовые нормы обязан соблюдать пользователь информационных ресурсов.

Учащийся должен уметь:

-регулировать свою информационную деятельность в соответствие с этическими и правовыми нормами общества.

3. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

7 класс

№ п/п	Содержание материала (раздел, тема)	Количество часов
1.	Человек и информация	5
2.	Компьютер: устройство и программное обеспечение	7
3.	Текстовая информация и компьютер	9
4.	Графическая информация и компьютер	5
5.	Мультимедиа и компьютерные презентации	5
6.	Итоговое повторение. Резерв времени	3
	Итого	34

8 класс

№ п/п	Содержание материала	Количество
	(раздел, тема)	часов
1.	Передача информации в компьютерных сетях	7
2.	Информационное моделирование	4
3.	Хранение и обработка информации в базах данных	10
4.	Табличные вычисления на компьютере	10
5.	Итоговое повторение. Резерв времени	3
	Итого	34

9 класс

№ п/п	Содержание материала	Количество
	(раздел, тема)	часов
1.	Управление и алгоритмы	12
2.	Введение в программирование	17
3.	Информационные технологии и общество	3
4.	Итоговое повторение. Резерв времени2	2
	Итого	34